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A dependence is found for the hydraulic flow drag on the Reynolds number 
and nonstationarity parameter. 

Unsteady flow in a pipeline in a hydraulic formulation is described by one-dimensional 
equations for the mass flow rate and pressure as a function of the time and the longitudi- 
nal coordinate. An unknown friction stress on the internal pipe surface, for which the 
expression is taken exactly the same as in a stationary stream [i], enters into these equa- 
tions. The friction stress here depends just on the mean stream velocity over the section 
and is independent of the nonstationarity parameter K n = d/W218W/atl and the other unsteady 
flow characteristics. Experiments show that such an assumption is valid for K n < 0.02 [2]. 
For large values of the quantity K n a noticeable discrepancy is noted between the computa- 
tional and experimental data. 

In this connection, it is proposed to use results of solving an axisymmetric problem 
on turbulent unsteady fluid motion in a constant radius pipe to calculate the friction 
stress in a one-dimensional model. A two-layer stream-viscous layer scheme near the inner 
pipe surface and a turbulen~ core in the rest of the stream is assumed for finding the 
velocity profile. A Newtonian rheological model according to which T = ~(Su/Sy), 0 J y J6 
is considered in the viscous layer. 

The rheological model of a fluid given by the Karman formula 
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is introduced into the turbulent stream core. Such a rheoiogical approach to describing 
the average turbulent stream in the stream core is developed in [3, 4]. If the Karman re- 
lationship (i) is taken as a rheological law for a turbulent medium in the stream core 
in a pipe, then it can be used to examine both stationary and nonstationary motion. Here 
(I) can be obtained on the basis of dimensional analysis [4, 5]. 

The fluid motion in a viscous layer is described by the following equation 

au Op a~u u = u ( y ,  t), t>O, O<.~y<~f(y, t). (2) 
P a---T - =  

The equation of motion in the core of a turbulent stream has the form 

Ov Op ! O (m), v p . . . . .  v(r, t), t>0, 
Ot Ox r or 

O<~r<~ R--a.  (3) 

Here x is the friction stress that is calculated by means of (i). 

Let us formulate the boundary conditions to find the solutions of (2) and (3). 
city on the inner pipe surface equals zero 

u(O, t)=0.  (4) 

Three conditions must be given on the boundary of the viscous layer and the turbulent stream 
core. Two reflect continuity of the velocity and the friction stress. We have 
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The equa t i on  of  motion in t he  core  i s  of  t h i r d  
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order,  consequently, s t i l l  another condi- 
tion must be given to find the solution. We take as such a condition [6] 

Ou u=6-0 = - -  K Ov y=~+0" ( 5 )  
8 p  ~ Or ,=R--~ 

A finite discontinuity of the velocity derivatives is thereby assumed on the turbulent core 
boundary. On the pipe axis 

vlr=0 = vo. (6) 

From dimensionality considerations the viscous layer thickness is introduced according to 
the relationships 

6 = =v l /  I'~wl lu, l '  u , - -  V signw~v" (7) 
P 

Applying the Slezkin-Targ method that is based on the assumption that the local accel- 
eration 3v/St can be replaced by the mean acceleration 3W/3t over the section, we write the 
equation of motion in the stream core in the form 

Op 0117 1 0 
Ox + 9 0 t  = - -  (r~), O<~r<~R--6.  (8) r Or 

A linear tangential stress profile is obtained in the stream core from (8) 

w~, = R--6 
, ~s WIt=R--8. 
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Hence 
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To the  accu racy  of  terms on t h e  o rde r  of  6/R the  s o l u t i o n  of  (9) wi th  t h e  boundary condi -  
t i o n s  (5) and (6) has t h e  form 

(9) 

To eliminate v 0 we take the average of the profile (i0) by means of the formula 

2 R 
IJg= R z . vrdr. 

o 

We then obtain to the accuracy of terms of order ~/R 

2c~ sign ws V / [w~} W Oo- ~- ~ =- 9 ' (11)  

where 
1 

c~= t" ( l / E +  lnl V ~ ' - I D  ~d~ = --  0,642. 
6 

The va lue  of  t h e  v e l o c i t y  on t h e  strea]n core  boundary [7] i s  found from (10) and (11) 

vI ,=R_8:IV+ s i g n ~  / ] x ~ (  Kv ~ - - 9 - - )  V 1--2c1+ In ~ ~ . (12) 

To so lve  ( 2 ) ,  a change of  v a r i a b l e s  i s  per formed in  t he  boundary l a y e r  accord ing  to  t he  
formulas q = Y/6(tl), tl = t, which permit representation of the acceleration in the form 
of a sum of two components 
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Fig. i. Influence of the Reynolds number on 
the time dependence of the pressure during a 
hydraulic shock: X = 0.25; R n = 200; @0 = 
0.15; a) Re i = i0,000; b) Re I = 50,000. 
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The prime deno t e s  d i f f e r e n t i a t i o n  wi th  r e s p e c t  t o  t he  t ime.  The f i r s t  component in the  
r i g h t  s i d e o f  t he  r e l a t i o n s h i p  (13) i s  de te rmined  by the  r e l a t i v e  change in the  v e l o c i t y  
p r o f i l e ,  and t he  second by the  change in  the  boundary l a y e r  t h i c k n e s s .  

Let  us i n t r o d u c e  the  c h a r a c t e r i s t i c  t ime of  a n o n s t a t i o n a r y  p r o c e s s  T i n to  the  c o n s i d e r -  
a t i o n  ( t he  t ime to  c l o s e  a s l i d e  g a t e ,  e t c . ) .  This  same t ime w i l l  a l s o  be c h a r a c t e r i s t i c  
f o r  the  change in boundary l a y e r  t h i c k n e s s .  The c h a r a c t e r i s t i c  t ime to  r e c o n s t r u c t  t he  v e l o -  
c i t y  p r o f i l e  in  the  boundary l e y e r  i s  o f  t he  o rde r  ~2/9,  c o n s e q u e n t l y  i f  T ~ 6~/~, then 
the  f i r s t  component in t he  r e l a t i o n s h i p  (13) can be n e g l e c t e d ,  then (2)  i s  s i m p l i f i e d  and 
after the substitution ~ = 8u/Sn goes over into 

0~ q_ 88' 8 ~ ap 
_ _  ~= 
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On the pipe surface the function @ equals 

q~l~=o = -- 
P 

, o ~ < n ~ < 1 .  (14) 

The solution of (14) with the boundary condition (15) is sought in the form 

oo 

~p = ~ an'q n" 
n = O  

The relationships 

c~h (--1)~ ( 88' ) k~w8 
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are obtained for values of the coefficients a n . 
ted to several of the first terms 

au , ~ 8  82 ap 
= ~ , - ~  -t- - 

a~l Ix ix ax 

(15) 

(16) 

(--1)h . (  88' ~k 8 z Op 

(2k+1)!~ ~ v )  F ax 

For T >> 62/v t he  s e r i e s  (16)  can be t i m i -  

t 6z6 ' t w  Dz. 
~l . . . . . .  (17) 

2 ~z p 

Integrating (17) with respect to q by using condition (4), we obtain for the value of the 
velocity on the boundary with the stream core 

-'W-',~8 ( I - T  v 1 88, ) @  i 82 Op (18) 
u l n = l = r  .. 2 p Ox 

To eliminate the pressure gradient 8p/Ox from (18), the equation in the stream core (8) is 
used. After taking the average of the components over the core section, we have 

1 Op 1 OW 2~s 
- -  ( 1 9 )  

p ~ v at ~R 
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Fig. 2. Influence of the nonstationary level 
on pressure wave front damping: Re I = i0,000; 
R n = 200; a) 80 = 0.015; b) 80 = 0.15. 

Since T = ~ 8u/By = ~/6 8u/Bq in the boundary layer, then taking account of the continuity 
condition for �9 during passage from the core into the boundary layer, we obtain from the 
solution (17) 

ms = 1 1 *w ( 1 86' ) 8 0 p  
Ix 8~ ~ = - 1 - - '  + .... �9 (20) n=l Ix 2 v , Ix Ox 

So lv ing  t h e  r e l a t i o n s h i p s  (19) and (20) f o r  ~s and @p/Bx, we have to  t he  accuracy  of  te rms  
of the order 6/R 

1 Op 1 OW 2 ~ (  1 8 8 ' )  
--~------ 1 - -  , (21)  

F Ox v Ot IxR 2 v 

w s  8 OW 1 88' ) 
u ,  Ot 2 v . 

S u b s t i t u t i n g  (21) i n t o  (18) ,  we o b t a i n  t o  t h e  accuracy  ment ioned  

"cw8 ( 1 8 8 ' )  8 20W 

The continuity condition for the velocity on the boundary of the core and the boundary 
layer permits equating the right sides of (12) and (23). Then taking account of (23), we 
write 

a:wS(], _,Z ) 82 __OW = W +  u,  V I 1  8 0 W 2  Z •  
Ix 3 x u ,  Ot 

(22) 

(23) 

2v Ot 

2 ' • 1--2cx+ In 2• 2 , u ,  Ot (24) 

1 88' 
Z =  

2 v 
Using (7), the parameter Z can be represented in the form 

Z = - -  ~z~ u~ (25)  
2 u~ " 

Upon s a t i s f a c t i o n  of  t h e  c o n d i t i o n  T >> 62/v  t he  p a r a m e t e r s  Z and 6/u~ 8W/St can be l e s s  
t h a n  one,  and t h e r e f o r e ,  l i n e a r i z a t i o n  of  (24) i s  a l l o w a b l e .  Then, by u s i n g  (7) and (25) ,  

(26) 

we obtain from (24) 

a2v Ou. jr cl 1 l n ~  = + - - - -  
2u~. Ot • 2~ c11 u, ] u. • 

( av O W ) (  2el 1 o~v ) a + - - l n  . 
- -  1 - 2u~ Ot . • x d lu,I 

26 



P 

o,5 

o 

# 

I 

f 

2 3 

i 

El. 

z,, 8 ,'2 e 

Fig. 3. Comparison of the results obtained with the 
Kholmbou and Rulo experiment [12] on a hydraulic 
shock for X = i (a) and X = 0.5 (b); (Re z = 6172; 
R n = 1.017; 8 o = 0.015): i) experiment; 2) computa J 
tion by the model proposed; 3) curves obtained on 
the basis of the quasistationary hypothesis. 

The differential equation (26) permits determination of the dynamic velocity u, as a 
function of the mean velocity and acceleration of the stream and can be used to close the 
system of one-dimensional equations [I] without involving the hypothesis of quasistation- 
arity 

O___pp+p~ OW = o, Op OW pu, lu,I 
at + p a--F= 2d (27) 

Equation (26) permits obtaining a relationship to find the hydraulic resistance co- 
efficient for a nonstationary flow lns which is introduced by the relationship 

. 

The desired equation is obtained in the form 

l 
A+BlnReV~s V~ns §247 + K~/2-(A~+B~InReV~-~ns). (29) 

Re kns 
After substituting u, from (28) into (25), the parameter Z takes the form 

Z =  Re ns ~ Ot (lnRe['r ) 

The parameters A, B:, A I, Bt, A 2, B 2 are expressed in terms of the two constants ~ and 
introduced earlier. 

Equation (29) is an analogue of the Nikuradze relationship for the hydraulic drag co- 
efficient with nonstationary "additions" proportional to the parameters Z and K n. If we 
set ~ = K/K, then upon going over to the stationary mode the dependence (29) goes over into 
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the Nikuradze relations, where its coefficients will have the same numerical values as in 
the stationary case. For the values K = 0.406 and K = 4.94 taken in [6], we have A = -0.768; 
B = 0.871; A l = -0.386; B I = 0.435; A 2 = 389; B 2 = 48.7. The approximate expression for Z 
in terms of the nonstationarity parameter and the Reynolds number has the form 

4 { K\2 Kn 
Z~ 

Now both the last components in the relationship (29) are proportional to the factor Kn/Re. 
For sufficient smallness of this factor the expression (29) goes over into the Nikuradze 
relationship for the hydraulic drag coefficient for stationary flow, i.e., the hypothesis 
of quasistationarity is valid. Numerical estimates yield the condition for applicability 
of the quasistationarity hypothesis: IKnl/Re < 3-10 -7 Therefore, the errors yielded by 
the quasistationarity hypothesis grow as the nonstationarity parameter increases and the 
Reynolds number diminishes. These deductions are confirmed by experimental data [8, 9] 
and the results of computations [i0]. 

The mathematical model obtained, that consists of the system of equations (26) and (27), 
was used to compute transients in a pipeline. Constant pressure at one end of the pipe 
while a piecewise-linear change in the velocity due to slide gate motion was given at the 
other, were taken as boundary conditions. Stationary flow was considered as the initial 
conditions for the transient. 

After passage to dimensionless quantities, (27), (26) and the relationship for u, from 
(7) take the form 

OP OU O, OP OU -- D~ Re~T~v, 
o--6-+ o x  = ao , =  

a2 OV (b~ + ln]V])= a:t U -  +1--(1 c~ o u \  b 
v-T a--T v3 +in ivl), 

4 
T w =  Re---Tl VIV]. 

The coefficients ax, a 2, as, b I, b 2 are calculated in terms of the Reynolds number Re I de- 
termined by means of the characteristic velocity, the dissipation parameter Dn, and the 
constants K and <. 

The initial and boundary conditions in dimensionless variables have the following form 

P (X, O) = Po -- s  m~ Re~Uo IUo] X, U (X, O) -- Uo, 
8 

P(O, O)=Po, U(1, O ) = { U ~  UO--ooU Of or 0<0-~<0o, 
( UH for 0~00.  

The passage over to dimensionless variables exposes the governing parameters of the 
problem which turn out to be the Reynolds number Re I, the damping parameter R n (R n = DnRex), 
and the dimensionless time of gate activation O 0 . The damping parameter is proportional 
to the ratio between the wave path time along the pipeline and the perturbation relaxation 
time in the turbulent core, consequently, it characterizes damping of the process. The 
time of gate activation 80 characterizes the nonstationarity level. 

A series of computations of the hydraulic shock for values Re I = 20,000, R n = 32-800, 
80 = 0.15 of the governing parameters disclosed the dependence of the results of computa- 
tions of the pressure fluctuations at fixed pipeline sections on the damping parameter R n. 
The greater the damping parameter, the earlier does the divergence from the quasistation- 
ary model appear. The absolute value of this divergence is greater for small dampings. 

"Blurring" of the pressure wave front, a phase shift and shorter duration of the tran- 
sient as compared with the solution obtained by using the quasistationarity hypothesis (see 
Fig. i) were observed in all the computations using the model being proposed. 

The error given by the quasistationarity hypothesis grows as the Reynolds number dimi- 
nishes, as was shown in examining the equation for the hydraulic drag coefficient (29). 
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This deduction was verified by a number of hydraulic shock computations (see figure) and 
the triggering of the filled pipeline. The Reynolds number varied within the band Re~ = 
104-5.10 # . 

As is seen from Fig. i, a computation by means of the model based on the hypothesis of 
quasistationarity (dashed curves) displayed a weak dependence of the solution on the Rey- 
nolds number. This is explained by the fact that the influence of the Reynolds number on 
the hydraulic drag coefficient is slight in the mentioned model. The solution obtained by 
means of the model proposed for the fixed parameters R n and 8 o depends substantially on 
the Reynolds number (solid curves). 

As has been established above, the difference from the model based on the hypothesis 
of quasistationarity increases as the nonstationarity parameter K n grows. It can be shown 
that the quasistationarity parameter K n is inversely proportional to the dimensionless time 
of gate activation 8o, i.e., the time of wave front formation, for a fixed damping para- 
meter R n. 

The numerical solution of the hydraulic shock problem for different times @0 in the b 
and 8 o = 0.015-0.8 showed that the parameter 8 o influences mainly the shape of the pressure 
wave at the beginning of the transient. 

Application of the quasistationarity hypothesis results in the fact that the pressure 
growth time at any distance from the site of wave origination equals the front formation 
time 80. A computation by the proposed model showed that the pressure growth time increases 
with distance from the site of wave origination, where this increase will be the greater, 
the smaller the time 80- Shown in Fig. 2 is the pressure wave front at different pipeline 
sections (the slide gate is in the section X = i). The solution obtained by the proposed 
model is displayed by solid lines and by the model bases on the quasistationarity hypothe- 
sis by dashed lines. As is seen from Fig. 2a, the pressure growth time obtained by the 
model proposed exceeds the quantity obtained on the basis of the quasistationarity hypo- 
thesis by several times at a sufficient distance from the slide gate. 

This result is analogous to the result obtained when studying laminar unsteady fluid 
flow along a pipeline [ii]. It is of practical importance since the pressure growth time 
is an essential parameter for the selection of the construction of regulating and protec- 
tive apparatus. 

To check out the model proposed, results were compared with the experimental data of 
Kholmbou and Rulo [12] on the hydraulic shock in a low-viscosity fluid (see Fig. 3). The 
initial flow mode was turbulent in these experiments. 

Because of the small dimensions of the installation the damping in the experiments des- 
cribed was quite minute and the authors themselves considered the results to be described 
well by the Zhukovskii solution. Indeed, the solution based on application of the quasi- 
stationarity hypothesis differed slightly from the Zhukovskii solution and the experimen- 
tal data in the first two periods are in good agreement with this model. However, a dis- 
crepancy is observed later which is especially noticeable in the section X = 0.5 (Fig. 3a). 
The model proposed yields good agreement with experiment. 

Therefore, the one-dimensional model constructed for unsteady turbulent fluid flow in 
pipes permits taking account of the influence of the quasistationarity level on the fric- 
tion drag. It is an expansion of the model based on the quasistationarity hypothesis. 

NOTATION 

x, r, longitudinal and radial coordinates; y, distance from the internal pipe surface; 
t, time; u, velocity along the pipe axis in the boundary layer; v, Reynolds average velocity 
along the pipe axis in the stream core; W, velocity averaged over the pipe section; p, pres- 
sure; ~, friction stress; u,, dynamic velocity; ~, ~, dynamic and kinetic viscosities; R, d, 
pipe radius and diameter, respectively; 6, boundary layer thickness; p, density; c, speed of 
sound; Is, Ins, hydraulic drag coefficients for stationary and nonstationary flows; ~, K, ~, 
constants. Dimensionless criteria: Re = IWId/v, Re I = IW11d/~, Reynolds numbers defined by 
means of the running and characteristic mean velocities; Kn, nonstationary parameter; D n = 
vL/R2c, dissipation parameter; L, pipe length; R n, damping parameter. Dimensionless quan- 
tities; X = x/L, longitudinal coordinate; 8 = ct/L, time; U = W/WI, velocity; P = p/(pcWl), pres- 
sure; V = Ru,/~, dynamic velocity; T W = ~W/(PW~), tangential stress on the inner pipe 
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surface; Uo, P0, initial velocity and pressure; UK, final velocity; and so, time of gate 
activation. 

LITERATURE CITED 

i. I. A. Charnyi, Unsteady Motion of a Real Fluid in Pipes [in Russian], Moscow (1975). 
2. V. M. Lyatkher, Turbulence in Hydraulic Constructions [in Russian], Moscow (1968). 
3. V. V. Novozhilov, Theory of the Plane Turbulent Boundary Layer of an Incompressible 

Fluid [in Russian], Leningrad (1977). 
4. M. V. Lur'e and N. A. Podoba, Dokl. Akad. Nauk SSSR, 279, No. 3, 570-575 (1984). 
5. L. G. Loitsyanskii, Mechanics of Fluids and Gases [in Russian], Moscow (1970). 
6. I. P. Ginzburg, Theory of Resistance and Heat Transfer [in Russian], Leningrad (1970). 
7. I. G. Rozenberg, Trudy MINKh i GP, No. 186, Mechanics of Fluids and Gases [in Russian], 

62-68, Moscow (1984). 
8. S. B. Markov, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 65-74 (1973). 
9. S. V. Denisov, Inzh.-Fiz. Zh., 18, No. i, 118-123 (1970). 
i0. B. S. Baibikov, G. A. Dreitser, V. G. Izosimov, and A. N. Shirshov, Trudy All-Union 

Polytechnic Correspondence Institute., Hydraulics [in Russian], 10, No. 3, 89-101 (1974). 
ii. G. D. Rozenberg and I. N. Buyanovskii, Unsteady Motion Equations of a Viscous Slightly 

Compressible Fluid in Pipes with the Influence of Nonstationarity on the Friction Force 
Taken Into Account. Appendix V to Unsteady Motion of a Real Fluid in Pipes by I. A. 
Charnyi [in Russian], 247-290, Moscow (1975). 

12. E. L. Kholmbou and V. T. Rulo, Theoretical Principles of Engineering Computations [in 
Russian], No. 1 (1967), pp. 202-209. 

STEADY-STATE TWO-DIMENSIONAL WAVES ON VERTICAL LIQUID 

FALLING FILMS AND THEIR STABILITY 

Yu. Ya. Trifonov and O. Yu. Tsvelodub UDC 532.51 

An investigation is reported of the stability of nonlinear conditions with res- 
pect to infinitely small perturbations; there is good agreement with experiment. 

Their large interfacial contact areas and small thermal resistances make liquid films 
an effective means of carrying out interphase heat and mass transfer processes. It is well 
known that as a result of the instability of flows with flat free surfaces the nature of the 
motion of liquid films flowing down vertical walls is wavy even at small Reynolds numbers. 
The urgency to study these conditions arises as a result of the fact, in particular, that 
the presence of the waves has a considerable effect on the process of interracial transfer 
through the free surface. Thus, in the desorption of slightly soluble gases the mass trans- 
fer coefficients may be increased by 100% or more as a result of the waves [i]. 

A special but important form of wavy flow consists of planar, steady-state periodic 
travelling waves. Their theoretical consideration is quite complicated, since it is neces- 
sary to solve a highly nonlinear boundary-value problem with a free boundary whose position 
is not known in advance. With the assumptions that the profiles of the longitudinal velo- 
cities are similar for any cross section x and any moment of time t: 

u =  1,5 q ( x ' t )  (2 g g2 .) 
h (x, t) h (x, t) h ~ (x, t) 

and that the wavelengths are large, a system of equations has been derived in [2] for des- 
cribing the behavior of perturbations on a film at moderate Reynolds numbers: 

Oq + 1,2 0 / q2 ~ 3vq ~h 03h Oh Oq (1) 
" Ot -~x ~ - -h - )  = ~ h 2 -t- gh + - -  - -  Ox 3 - -  -t- Ox =0, 
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